Характеристический и минимальный многочлен. Характеристический многочлен матрицы Характеристический многочлен квадратной матрицы

Рассмотрим квадратную матрицу А = ||аik||1n. Характеристической матрицей для матрицы А называется матрица лЕ-А.

л - а 11 -а 12 … -а 1n

лЕ-А = -а21 л - а22 … -а 2n

….…………………… .

А n1 -а n2 … л - аnn

Определитель характеристической матрицы

?(л) = |лЕ-А| = |л дik - аik|1n

представляет собой скалярный многочлен относительно л и называется характеристичным многочленом матрицы А.

Матрицу В(л) = ||bik (л)||1n , где bik (л) - алгебраическое дополнение элемента лдik - аik в определителе?(л), мы будем называть присоединенной матрицей для матрицы А.

Чтобы найти старшие члены характеристического многочлена, воспользуемся тем, что величина определителя равна сумме произведений его элементов, взятых по одному из каждой строки и каждого столбца и снабженных надлежащими знаками. Поэтому, чтобы получить член, имеющий относительно л наивысшую степень, необходимо взять произведения элементов наивысшей степени. В нашем случае таким произведением будет только одно- произведение диагональных элементов (л - а11) (л - а22) …(л - аnn). Все остальные входящие в состав определителя произведения имеют степень не выше n-2, так как если один из множителей такого произведения будет - аik (i ? k), то это произведение не будет содержать множителями л-аii, л-акк и будет, следовательно, степени не более n-2. Таким образом, ?(л) = (л - а11) … (л - аm) + члены степени не выше n-2, или

?(л) = лn - (а11 + … + аnn) лn-1 + …(22)

Сумма диагональных элементов матрицы называется ее следом. Формула (22) показывает, что степень характеристического многочлена матрицы равна порядку этой матрицы, старший коэффициент характеристического многочлена равен 1, а коэффициент при лn-1 равен следу матрицы, взятому с обратным знаком.

Т е о р е м а 3. Характеристические многочлены подобных матриц равны друг другу.

Из этой теоремы вытекает, в частности, что подобные матрицы имеют одинаковые следы и определители, так как след и определитель матрицы, взятые с надлежащими знаками, являются коэффициентами ее характеристического многочлена.

Корни характеристического многочлена матрицы называются ее характеристическими числами или собственными значениями. Кратные корни характеристического многочлена называются кратными собственными значениями матрицы. Известно, что сумма всех вещественных и комплексных корней многочлена степени n, имеющего старший коэффициент 1, равна взятому с обратным знаком коэффициенту при (n-1)-й степени переменной. Формула (22) показывает поэтому, что в поле комплексных чисел сумма всех собственных значений матрицы равна ее следу.

Т е о р е м а Г а м и л ь т о н а - К э л и. Каждая матрица является корнем своего характеристического многочлена, т.е. ?(А)= 0.

?(л) = л - 2 -1 = лІ - 5л + 7,

?(А) = АІ - 5А + 7Е = 3 5 -5 2 1 +7 1 0 = 0 0 = 0.

Определение

Для данной матрицы , , где Е - единичная матрица , является многочленом от , который называется характеристическим многочленом матрицы A (иногда также "вековым уравнением" (secular equation)).

Ценность характеристического многочлена в том, что собственные значения матрицы являются его корнями. Действительно, если уравнение имеет не нулевое решение, то , значит матрица вырождена и ее определитель равен нулю.

Связанные определения

Свойства

.

Ссылки

  • В. Ю. Киселёв, А. С. Пяртли, Т. Ф. Калугина Высшая математика. Линейная алгебра . - Ивановский государственный энергетический университет.

Wikimedia Foundation . 2010 .

Смотреть что такое "Характеристический многочлен матрицы" в других словарях:

    В математике характеристический многочлен может означать: характеристический многочлен матрицы характеристический многочлен линейной рекуррентной последовательности характеристический многочлен обыкновенного дифференциального уравнения.… … Википедия

    Матрицы над полем К многочлен над полем К Степень X. м. равна порядку квадратной матрицы А, коэффициент b1 равен следу матрицы.(b1 = tr A = a11+ а 22+ .. . +а пп), коэффициент b т равен сумме всех главных миноров т гопорядка, в частности bn=detA … Математическая энциклопедия

    У этого термина существуют и другие значения, см. Минимальный многочлен. Минимальный многочлен матрицы аннулирующий унитарный многочлен минимальной степени. Свойства Минимальный многочлен делит характеристический многочлен матрицы… … Википедия

    Основная статья: Функции от матриц Лямбда матрица (λ матрица, матрица многочленов) квадратная матрица, элементами которой являются многочлены над некоторым числовым полем. Если имеется некоторый элемент матрицы, который является многочленом … Википедия

    Совокупность ее собственных значений. См. также Характеристический многочлен матрицы … Математическая энциклопедия

    Красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору,… … Википедия

    Квадратные матрицы A и B одинакового порядка называются подобными, если существует невырожденная матрица P того же порядка, такая что: Подобные матрицы получаются при задании одного и того же линейного преобразования матрицей в разных… … Википедия

    Характеристический многочлен это многочлен, определяющий собственные значения матрицы. Другое значение: Характеристический многочлен линейной рекурренты это многочлен. Содержание 1 Определение … Википедия

    Теорема Гамильтона Кэли известная теорема из теории матриц, названная в честь Уильяма Гамильтона и Артура Кэли. Теорема Гамильтона Кэли Любая квадратная матрица удовлетворяет своему характеристическому уравнению. Если … Википедия

Определение

Для данной матрицы , , где Е - единичная матрица , является многочленом от , который называется характеристическим многочленом матрицы A (иногда также "вековым уравнением" (secular equation)).

Ценность характеристического многочлена в том, что собственные значения матрицы являются его корнями. Действительно, если уравнение имеет не нулевое решение, то , значит матрица вырождена и ее определитель равен нулю.

Связанные определения

Свойства

.

Ссылки

  • В. Ю. Киселёв, А. С. Пяртли, Т. Ф. Калугина Высшая математика. Линейная алгебра . - Ивановский государственный энергетический университет.

Wikimedia Foundation . 2010 .

  • Характеристическая кривая задания
  • Харальд III (король Норвегии)

Смотреть что такое "Характеристический многочлен матрицы" в других словарях:

    Характеристический многочлен - В математике характеристический многочлен может означать: характеристический многочлен матрицы характеристический многочлен линейной рекуррентной последовательности характеристический многочлен обыкновенного дифференциального уравнения.… … Википедия

    ХАРАКТЕРИСТИЧЕСКИЙ МНОГОЧЛЕН - матрицы над полем К многочлен над полем К Степень X. м. равна порядку квадратной матрицы А, коэффициент b1 равен следу матрицы.(b1 = tr A = a11+ а 22+ .. . +а пп), коэффициент b т равен сумме всех главных миноров т гопорядка, в частности bn=detA … Математическая энциклопедия

    Минимальный многочлен матрицы - У этого термина существуют и другие значения, см. Минимальный многочлен. Минимальный многочлен матрицы аннулирующий унитарный многочлен минимальной степени. Свойства Минимальный многочлен делит характеристический многочлен матрицы… … Википедия

    Лямбда-матрицы - Основная статья: Функции от матриц Лямбда матрица (λ матрица, матрица многочленов) квадратная матрица, элементами которой являются многочлены над некоторым числовым полем. Если имеется некоторый элемент матрицы, который является многочленом … Википедия

    СПЕКТР МАТРИЦЫ - совокупность ее собственных значений. См. также Характеристический многочлен матрицы … Математическая энциклопедия

    Характеристическое число матрицы - Красным цветом обозначен собственный вектор. Он, в отличие от синего, при деформации не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору,… … Википедия

    Подобные матрицы - Квадратные матрицы A и B одинакового порядка называются подобными, если существует невырожденная матрица P того же порядка, такая что: Подобные матрицы получаются при задании одного и того же линейного преобразования матрицей в разных… … Википедия

    Характеристическая матрица

    Характеристическое уравнение - Характеристический многочлен это многочлен, определяющий собственные значения матрицы. Другое значение: Характеристический многочлен линейной рекурренты это многочлен. Содержание 1 Определение … Википедия

    Теорема Гамильтона - Теорема Гамильтона Кэли известная теорема из теории матриц, названная в честь Уильяма Гамильтона и Артура Кэли. Теорема Гамильтона Кэли Любая квадратная матрица удовлетворяет своему характеристическому уравнению. Если … Википедия

Рассмотрим квадратную матрицу

Как было показано(6.1.), все матрицы, подобные матрице А , т.е. все матрицы видаА*= Т -1 АТ , гдеТ – любая невырожденная матрица (квадратная), обладают одним и тем же определителем| A |=| A *|.

Подобные матрицы обладают еще одной общей для всех них характеристикой.

Наряду с матрицей А рассмотрим матрицу

,

которая образована из А заменой диагональных элементовa ij элементами
, где– произвольное число. Определитель этой матрицы

представляет собой многочлен степени n относительно (коэффициент приравен (-1) n). Многочлен
называется характеристическим многочленом матрицыА .

Покажем, что все подобные матрицы имеют один и тот же характеристический многочлен, т.е. что , гдеА*=Т -1 АТ .

Для этого воспользуемся тождеством Е*= Т -1 ЕТ . Тогда, заменяя в матрице
матрицыА* иЕ соответственно наТ -1 АТ иТ -1 ЕТ , получаем:

Таким образом, все подобные матрицы имеют один и тот же характеристический многочлен
.

Алгебраическое уравнение n -й степени
называется характеристическим уравнением матрицыА , а его корни – характеристическими числами.

Характеристическое уравнение имеет вид

где – следk -го порядка матрицыА .

Следом k -го порядканазывается сумма возможных
главных миноровk -ого порядка:

Характеристическое уравнение имеет n не обязательно различных корней
. Каждому характеристическому корню соответствует собственный вектор с точностью до постоянного множителя.

Сумма характеристических корней равна следу матрицы А :

а произведение характеристических корней равно определителю матрицы А :

Число ненулевых корней совпадает с рангом матрицы линейного оператора.

Одним из методов для нахождения коэффициентов
характеристического уравнения является методом Фаддеева. Пусть линейный операторзадан матрицейА . Тогда коэффициентывычисляются по следующей схеме:

Пример. Найти собственные значения линейного оператора, заданного матрицей

.

Решение. Характеристическое уравнение имеет вид

В итоге получаем следующее характеристическое уравнение:

или откуда– собственные значения линейного оператора.

Теорема Гамильтона-Кэли. Каждая квадратная матрица является корнем своего характеристического многочлена.

Доказательство. Рассмотрим многочлен

Элементами матрицы В являются многочлены отстепени не выше (n -1 ). Поэтому матрицуВ можно представить в следующем виде:

Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства (6.2.4), получим

Умножим равенства (6.2.5) соответственно на
и сложим полученные результаты:

откуда следует, что
. Теорема доказана.

Пример. Линейный операторзадан матрицей

.

Найти
и показать, что
.

Решение. Составим матрицу

Многочлен
имеет вид

.

6.3. Собственный вектор и собственное число линейного оператора

Пусть в пространстве задан линейный оператор.

Определение. Ненулевой вектор
, удовлетворяющий соотношению
, называется собственным вектором, а соответствующее число– собственным значением оператора.

Из данного определения следует, что образом собственного вектора является коллинеарный ему вектор
.

Отметим некоторые свойства собственных векторов оператора .

1. Каждому собственному вектору соответствует единственное собственное число. Предположим обратное: пусть собственному вектору операторасоответствуют два собственных числа
. Это значит, что

,

.

Но отсюда следует, что

Так как по условию – ненулевой вектор, то
.

2. Если и– собственные векторы операторас одним и тем же собственным числом, то их сумма
также является собственным вектором операторас собственным числом. Действительно, так как
и
, то

3. Если – собственный вектор операторас собственным числом, то любой вектор
, коллинеарный вектору, также является собственным вектором операторас тем же самым собственным числом.

Действительно,

Таким образом, каждому собственному числу соответствует бесчисленное множество коллинеарных собственных векторов. Из свойств 2 и 3 следует, что множество собственных векторов оператора, соответствующих одному и тому же собственному числу, образует пространство, которое является подпространством пространства.

Докажем теорему о существовании собственного вектора.

Теорема. В комплексном линейном пространствекаждый линейный операторимеет, по крайней мере, один собственный вектор.

Доказательство. Пусть – линейный оператор, заданный в пространстве, а–собственный вектор этого оператора с собственным числом, т.е.
. Выберем произвольный базис
и обозначим координаты векторав этом базисе через
. Тогда, если
– матрица операторав базисе
, то, записывая соотношение в матричной форме, получим

где
.

В координатной форме матричное уравнение (6.3.1) имеет вид

Для отыскания собственного вектора необходимо найти ненулевые решения системы (6.3.2), которые существуют тогда и только тогда, когда определитель системы равен нулю, т.е. когда
. Отсюда следует, что собственное число линейного оператораявляется его характеристическим числом, которое всегда существует. Подставляя это число в систему (6.3.2), найдет ненулевое решение этой системы, которое определяет искомый собственный вектор. Теорема доказана.

Из данной теоремы следует, что нахождение собственного числа линейного оператора и соответствующего ему собственного векторасводится к решению характеристического уравнения
. Пусть
– различные корни характеристического уравнения. Подставив какой-нибудь кореньв систему (6.3.2), найдем все ее линейно независимые решения, которые и определяют собственные векторы, соответствующие собственному числу. Если ранг матрицы
равенr иr < n , то существуетk = n - r линейно независимых собственных векторов, отвечающих корню.

Пример. Найти собственные векторы линейного оператора, заданного матрицей

.

Решение. Составим характеристическое уравнение

,

или
откуда
.

Подставляем корни
в систему (6.3.1). Найдем собственные векторы оператора.

При
имеем

.

Получим однородную систему трех линейных уравнений, из которых только одно (любое) является линейно независимым. Общее решение системы имеет вид
. Найдем два линейно независимых решения:

Тогда собственные векторы, соответствующие собственным значениям
, имеют вид

,

где с – произвольное действительное число, отличное от нуля.

При
имеем

.

Общее решение данной системы имеет вид

Собственный вектор, соответствующий собственному значению
, равен

.

Теорема. Пусть собственные значения
операторапопарно различны. Тогда отвечающие им собственные векторы
линейно независимы.

Доказательство. Используем метод индукции по числу переменных. Так как– ненулевой вектор, то приp =1 утверждение теоремы справедливо.

Пусть утверждение теоремы справедливо для m < p векторов
. Присоединим к этим векторам вектор
и допустим, что имеет место равенство

Так как
, -собственные векторы, то
и поэтому равенство (6.3.4) можно переписать следующим образом:

По условию все
, различны, поэтому
. Система векторов
– линейно независимая. Поэтому из (6.3.6) следует, что. Тогда из (6.3.3) и из условия, что
– собственный вектор (
), получаем
. Это означает, что
– система линейно независимых векторов. Индукция проведена. Теорема доказана.

Следствие: если все собственные значения
попарно различны, то отвечающие им собственные векторы
образуют базис пространства.

Теорема. Если в качестве базиса пространствапринятьn линейно независимых собственных векторов, то операторув этом базисе соответствует диагональная матрица

.

Доказательство. Рассмотрим произвольный вектор
и базис, составленный из собственных векторов
этого пространства. Тогда, где
– координаты векторав базисе
.

Применяя к вектору оператор, получим
или
.

Так как
, – собственный вектор, то
.

Из (6.3.7) имеем

,

,

.

Равенства (6.3.8) означают, что матрица линейного оператора в базисе
имеет вид

.

Теорема доказана.

Определение. Линейный операторв пространствеR n называется оператором простой структуры, если он имеетn линейно независимых собственных векторов.

Очевидно, что операторы простой структуры, и только они, имеют диагональные матрицы в некотором базисе. Этот базис может быть составлен лишь из собственных векторов оператора . Действие любого оператора простой структуры всегда сводится к «растяжению» координат вектора в данном базисе.

Пусть дана квадратная матрица порядка n . Характеристической матрицей матрицы A называют матрицу

= с переменной λ, принимающей любые числовые значения.

Определитель ׀https://pandia.ru/text/78/250/images/image004_113.gif" width="153" height="75 src="> матрицы является многочленом n -й степени от λ. Этот многочлен называют характеристическим многочленом матрицы А , уравнение =0 – её характеристическим уравнением, а его корни https://pandia.ru/text/78/250/images/image008_68.gif" width="15" height="17 src="> называется всякий ненулевой вектор Х , удовлетворяющий условию https://pandia.ru/text/78/250/images/image010_64.gif" width="19" height="24 src="> – число.

Число называется собственным значением преобразования https://pandia.ru/text/78/250/images/image011_63.gif" width="201" height="75">(*)

Если известно собственное значение λ , то все собственные векторы матрицы А , принадлежащие этому собственному значению, находятся как ненулевые решения этой системы. С другой стороны, эта однородная система с квадратной матрицей А–λЕ имеет ненулевые решения Х тогда и только тогда, когда определитель матрицы этой системы равен нулю и λ принадлежит рассматриваемому полю Р . Но это означает, что λ является корнем характеристического многочлена и принадлежит полю Р . Таким образом, характеристические числа матрицы, принадлежащие основному полю, и только они, являются её собственными значениями. Для отыскания всех собственных значений матрицы А нужно найти все её характеристические числа и из них выбрать лишь те, которые принадлежат основному полю Р , а для отыскания всех собственных векторов матрицы А нужно найти все ненулевые решения системы (*) при каждом собственном значении λ матрицы А .

Пример 1. Найти собственные значения и собственные векторы действительной матрицы .

Решение. Характеристический многочлен матрицы А имеет вид:

https://pandia.ru/text/78/250/images/image014_58.gif" width="144" height="75 src=">=(домножим (2)-й столбец на число (-2) и сложим с (1)-м столбцом) =https://pandia.ru/text/78/250/images/image016_45.gif" width="172" height="75">=(домножим (1)-й столбец на число (-1) и сложим с (3)-м столбцом) ==(домножим (1)-ю строку на число (2) и сложим со (2)-й строкой) ==(домножим (2)-й столбец на число (-2) и сложим с (3)-м столбцом) =
.

Таким образом, характеристический многочлен имеет корни λ1=6, λ2=λ3= – 3. Все они действительные и поэтому являются собственными значениями матрицы А .

При λ=6 система (А–λЕ)Х=0 имеет вид https://pandia.ru/text/78/250/images/image021_35.gif" width="57" height="75 src=">..gif" width="153" height="75 src=">.

Её общим решением является Х =https://pandia.ru/text/78/250/images/image025_28.gif" width="85" height="27 src=">, оно даёт общий вид собственных векторов матрицы А , принадлежащих собственному значению λ= – 3.