Построение графиков линейной функции содержащие модуль. Графики функций с модулем

Эрднигоряева Марина

Данная работа является результатом изучения темы на факультативе в 8 классе. Здесь показываются геометрические преобразования графиков и их применение к построению графиков с модулями. Вводится понятие модуля и его свойства. Показано как строить графики с модулями различными способами: с помощью преобразований и на основе понятия модуля.Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах,изучается в классах с улгубленным изучением математики. Тем не меннн такие задания даются во второй части ГИА, в ЕГЭ. Данная работа поможет понять как строить графики с модулями не только линейных, но и других функций(квадратичных, обратно- пропорциональных и др.) Работа поможет при подготовке к ГИА и ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики линейной функции с модулями Работа Эрднигоряевой Марины, ученицы 8 класса МКОУ «Камышовская ООШ» Руководитель Горяева Зоя Эрднигоряевна, учитель математики МКОУ « Камышовская ООШ» с. Камышово, 2013г.

Цель проекта: Ответить на вопрос как строить графики линейных функций с модулями. Задачи проекта: Изучить литературу по данному вопросу. Изучить геометрические преобразования графиков и их применение к построению графиков с модулями. Изучить понятие модуля и его свойства. Научиться строить графики с модулями различными способами.

Прямая пропорциональность Прямой пропорциональностью называется функция, которую можно задать формулой вида y=kx , где x –независимая переменная, k -не равное нулю число.

Построим график функции y = x x 0 2 y 0 2

Геометрическое преобразование графиков Правило №1 График функции y = f (x)+ k – линейная функция - получается параллельным переносом графика функции y = f (x) на + k единиц вверх по оси О y при k> 0 или на |- k| единиц вниз по оси О y при k

Построим графики y=x+3 y=x-2

Правило № 2 График функции y=kf(x) получается растягиванием графика функции y = f (x) вдоль оси О y в a раз при a>1 и сжатием вдоль оси О y в a раз при 0Слайд 9

Построим график y=x y= 2 x

Правило № 3 График функции y =- f (x) получается симметричным отображением графика y = f (x) относительно оси О x

Правило № 4 График функции y=f(- x) получается симметричным отображением графика функции y = f (x) относительно оси О y

Правило № 5 График функции y=f(x+c) получается параллельным переносом графика функции y=f(x) вдоль оси О x вправо, если c 0 .

Построим графики y=f(x) y=f(x+2)

Определение модуля Модуль неотрицательного числа а равен самому числу а; модуль отрицательного числа а равен противоположному ему положительному числу -а. Или, |а|=а, если а ≥0 |а|=-а, если а

Графики линейных функций с модулями строятся: с использованием геометрических преобразований с помощью раскрытия определения модуля.

Правило № 6 График функции y=|f(x)| получается следующим образом: часть графика y=f(x) , лежащая над осью О x , сохраняется; часть, лежащая под осью О x , отображается симметрично, относительно оси О x .

Построить график функции y=-2| x-3|+4 Строим y ₁=| x | Строим y₂= |x - 3 | → параллельный перенос на +3 единицы вдоль оси Ох (сдвиг вправо) Строим y ₃ =+2|x-3| → растягиваем вдоль оси О y в 2 раза = 2 y₂ Строим у ₄ =-2|x-3| → симметрия относительно оси абсцисс = - y₃ Строим y₅ =-2|x-3|+4 → параллельный перенос на +4 единицы вдоль оси О y (сдвиг вверх) = y ₄ +4

График функции y =-2|x-3|+4

График функции у= 3|х|+2 y₁=|x| y₂=3|x|= 3 y₁ → растяжение в 3 раза y₃=3|x| +2= y₄+2 → сдвиг вверх на 2 единицы

Правило № 7 График функции y=f(| x |) получается из графика функции y=f(x) следующим образом: При x > 0 график функции сохраняется, и эта же часть графика симметрично отображается относительно оси О y

Построить график функции y = || x-1 | -2 |

У₁= |х| у₂=|х-1| у₃= у₂-2 у₄= |у₃| У=||х-1|-2|

Алгоритм построения графика функции y=│f(│x│)│ построить график функции y=f(│x│) . далее оставить без изменений все части построенного графика, которые лежат выше оси x . части, расположенные ниже оси x , отобразить симметрично относительно этой оси.

У=|2|х|-3| Построение: а) у= 2х-3 для х >0, б) у=-2х-3 для х Слайд 26

Правило № 8 График зависимости | y|=f(x) получается из графика функции y=f(x) если все точки, для которых f(x) > 0 сохраняются и они же симметрично переносятся относительно оси абсцисс.

Построить множество точек на плоскости, декартовы координаты которых х и у удовлетворяют уравнению |у|=||х-1|-1|.

| y|=||x-1| -1| строим два графика 1) у=||х-1|-1| и 2) у =-|| х-1|-1| y₁=|x| y₂=| x-1 | → сдвиг по оси Ох вправо на 1 единицу y₃ = | x -1 |- 1= → сдвиг на 1 единицу вниз y ₄ = || x-1|- 1| → симметрия точек графика для которых y₃ 0 относительно О x

График уравнения |y|=||x-1|-1| получаем следующим образом: 1)строим график функции y=f(x) и о с тавляем без изменений ту его часть, где y≥0 2) с помощью симметрии относительно оси Оx построим другую часть графика, соответствующую y

Построить график функции y =|x | − | 2 − x | . Решение. Здесь знак модуля входит в два различных слагаемых и его нужно снимать. 1) Найдём корни подмодульных выражений: х=0, 2-х=0, х=2 2) Установим знаки на интервалах:

График функции

Вывод Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах, изучается в классах по углубленному изучению курса математики. Тем не менее такие задания даются во второй части ГИА. Данная работа поможет понять как строить графики с модулями не только линейных функций, но и других функций(квадратичных, обратно пропорциональных и др.). Работа поможет при подготовке к ГИА и ЕГЭ и позволит получить высокие баллы по математике.

Литература Виленкин Н.Я. , Жохов В.И.. Математика”. Учебник 6 класс Москва. Издательство “ Мнемозина”, 2010г Виленкин Н.Я., Виленкин Л.Н., Сурвилло Г.С. и др. Алгебра. 8 класс: учебн. Пособие для учащихся и классов с углубленным изучением математики. – Москва. Просвещение, 2009 г Гайдуков И.И. “Абсолютная величина”. Москва. Просвещение, 1968. Гурский И.П. “Функции и построение графиков”. Москва. Просвещение, 1968. Ящина Н.В. Приёмы построения графиков, содержащих модули. Ж/л «Математика в школе»,№3,1994г Детская энциклопедия. Москва. «Педагогика», 1990. Дынкин Е.Б., Молчанова С.А. Математические задачи. М., «Наука», 1993. Петраков И.С. Математические кружки в 8-10 классах. М., «Просвещение», 1987 . Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся и классов с углубленным изучением математики. – 12-е изд. – М.: Просвещение, 2006. – 301 с. Макрычев Ю.Н., Миндюк Н.Г. Алгебра: Дополнительные главы к школьному учебнику 9 кл.: Учебное пособие для учащихся школы и классов с углубленным изучением математики / Под редакцией Г.В.Дорофеева. – М.: Просвещение, 1997. – 224 с. Садыкина Н. Построение графиков и зависимостей, содержащих знак модуля /Математика. - №33. – 2004. – с.19-21 .. Кострикина Н.П “ Задачи повышенной трудности в курсе алгебры для 7-9 классов ”... Москва.: Просвещение, 2008г.

Функция вида y=|x|.
График функции на промежутке – с графиком функции у=-х.

Рассмотрим сначала простейший случай – функцию y=|x|. По определению модуля, имеем:

Таким образом, для х≥0 функция y=|x| совпадает с функцией у=х, а для х Пользуясь этим разъяснением, легко построить график функции y=|x|(рис.1).

Легко заметить, что этот график является объединением той части графика функции у = х, которая лежит не ниже оси OX и линии, полученной зеркальным отражением относительно оси OX, той его части, которая лежит ниже оси OX.
Этот способ пригоден и для построения графика функции y=|kx+b|.
Если график функции y=kx+b изображен на рис.2, то графиком функции y=|kx+b| является линия, изображенная на рис.3.

Пример 1. Построить график функции y=||1-x 2 |-3|.
Построим график функции y=1-x 2 и применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3.

Применим операцию «модуль» и получим окончательный график функции y=||1-x 2 |-3|


Пример 2. Построить график функции y=||x 2 -2x|-3|.
В результате преобразования получаем y=|x 2 -2x|=|(x-1) 2 -1|. Построим график функции y=(x-1) 2 -1: строим параболу y=x 2 и выполняем сдвиг вправо на 1 и вниз на 1.

Применим к нему операцию «модуль» (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX).

Выполним сдвиг графика вниз на 3 и применим операцию «модуль», в результате получим окончательный график.


Пример 3. Построить график функции .
Чтобы раскрыть модуль, надо рассмотреть два случая:
1)x>0, тогда модуль раскроется со знаком "+" =
2)x =

Построим график для первого случая.

Отбросим часть графика, где x

Построим график для второго случая и аналогично отбросим часть, где x>0, в итоге получим.

Соединим два графика и получим окончательный.


Пример 4. Построить график функции .
Построим сначала график функции .Для этого удобно выделить целую часть, получим . Строя по таблице значений, получаем график.

Применим операцию модуль (часть графика, расположенная ниже оси OX симметрично отражается относительно оси OX). Получаем окончательный график

Пример 5. Построить график функции y=|-x 2 +6x-8|. Cначала упростим функцию до y=1-(x-3) 2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика ниже оси OX, относительно оси OX


Пример 6. Построить график функции y=-x 2 +6|x|-8. Также упростим функцию до y=1-(x-3) 2 и построим её график

Теперь применим операцию «модуль» и отразим часть графика правее оси оY, в левую часть


Пример 7. Построить график функции . Построим график функции

Построим график функции

Выполним параллельный перенос на 3 единичных отрезка вправо и 2 вверх. График примет вид:

Применим операцию «модуль» и отразим часть графика правее прямой x=3 в левую полуплоскость.

Построение графиков функций, содержащих знак модуля.

Надеюсь, вы внимательно изучили пункт 23 и понимаете, чем отличается функция вида от функции . Теперь разберем еще пару примеров, которые должны вам помочь при построении графиков.

Пример 1. Построить график функции

Имеем функцию вида , где .

1. Построим сначала график подмодульной функции, т. е. функции . Для этого выделим целую часть у этой дроби. Напоминаю, что это можно сделать двумя способами: разделив числитель на знаменатель «в столбик» или расписав числитель так, чтобы в нем появилось выражение, кратное знаменателю. Выполним выделение целой части вторым способом.

Значит, подмодульная функция имеет вид . Значит, ее графиком является гипербола вида , смещенная на 1 единицу вправо и 3 единицы вверх.

Построим этот график.

2. Чтобы получить график искомой функции , необходимо часть построенного графика функции , лежащую выше оси Ох, оставить без изменений, а часть графика, лежащую ниже оси Ох, отобразить симметрично в верхнюю полуплоскость. Выполним эти преобразования.

График построен.

Абсциссу точки пересечения графика с осью Ох можно вычислить, решив уравнение

y = 0, т. е. . Получаем, что .

Теперь по графику можно определять все свойства функции, находить наименьшее и наибольшее значения функции на промежутке, решать задачи с параметром.

Например, можно ответить на такой вопрос. «При каких значениях параметра а уравнение имеет ровно одно решение?»

Проведем прямые y = a при различных значениях параметра а . (Тонкие красные прямые на следующем рисунке)

Видно, что если a<0 , то график построенной функции и прямая не имеют общих точек, а значит, уравнение не имеет ни одного решения.

Если 0< a<3 или a>3 , то прямая y = a и построенный график имеют две общие точки, т. е. уравнение имеет два решения.

Если же а = 0 или а = 3 , то уравнение имеет ровно одно решение, т. к. при этих значениях а прямая и график функции имеют ровно одну общую точку.

Пример 2. Построить график функции

Решение

Построим сначала график функции при неотрицательных значениях х. Если , то и тогда наша функция принимает вид , а искомая функция – это функция вида .

Графиком функции является ветвь параболы «направленная» влево, смещенная на 4 единицы вправо . (Т. к. мы можем представить ).

Построим график этой функции

и будем рассматривать только ту его часть, которая расположена правее оси Оy. Остальное сотрём.

Обратите внимание, что мы вычислили значение ординаты точки графика, лежащей на оси ординат. Для этого достаточно вычислить значение функции при х = 0. В нашем случае при х = 0 получили y = 2 .

Теперь построим график функции при х < 0 . Для этого построим линию, симметричную той, что мы уже построили, относительно оси Оу.

Таким образом, мы построили график искомой функции.

Пример 3. Построить график функции

Это задача уже совсем непростая. Видим, что тут присутствуют оба вида функций с модулем: и , и . Будем строить по порядку:

Сначала построим график функции без всех модулей: Затем добавим модуль у каждого аргумента. Получим функцию вида , т. е. . Для построения такого графика нужно применить симметрию относительно оси Оy. Добавим еще и внешний модуль. Получим, наконец, искомую функцию . Т. к. эта функция получена из предыдущей применением внешнего модуля, то мы имеем функцию вида , а значит, необходимо применить симметрию относительно Ох.

Теперь подробнее.

Это дробно-линейная функция, для построения графика нужно выделить целую часть, чем мы и займемся.

Значит, графиком этой функции является гипербола вида , смещенная на 2 вправо и 4 вниз.

Вычислим координаты точек пересечения с осями координат.

y = 0 при х = 0, значит, график пройдет через начало координат.

2. Теперь построим график функции .

Для этого в исходном графике сначала сотрём ту его часть, которая располагается левее оси Оy:

, а затем отобразим ее симметрично относительно оси Оy. Обратите внимание, асимптоты тоже симметрично отображаются!

Теперь построим окончательный график функции: . Для этого часть предыдущего графика, лежащую выше оси Ох, оставим без изменения, а то, что находится ниже оси Ох, симметрично отобразим в верхнюю полуплоскость. Опять-таки не забывайте, что асимптоты отображаются вместе с графиком!

График построен.

Пример 4. Применяя различные преобразования графиков, постройте график функции

Что-то совершенно накрученное и сложное! Куча модулей! А у квадрата икса модуля нет!!! Это невозможно построить!

Так или примерно так может рассуждать среднестатистический ученик 8 класса , незнакомый с техникой построения графиков.

Но не мы! Потому что мы знаем РАЗНЫЕ способы преобразования графиков функций и еще знаем разные свойства модуля.

Итак, начнем по порядку.

Первая проблема – отсутствие модуля у икса в квадрате. Не беда. Знаем, что . Хорошо. Значит, наша функция может быть записана в виде . Это уже лучше, потому что похоже на .

Дальше. У функции есть внешний модуль, поэтому, похоже, придется пользоваться правилами построения графика функции . Посмотрим тогда, что собой представляет подмодульное выражение. Это функция вида . Если бы не -2, то функция опять содержала бы внешний модуль и мы знаем, как построить график функции с помощью симметрий. Ага! Но ведь если мы его построим, то, сместив его на 2 единицы вниз, получим искомое!

Итак, что-то начинает вырисовываться. Попробуем составить алгоритм построения графика.

1.

5. И, наконец, . Всё то, что лежит ниже оси Ох, отобразим симметрично в верхнюю полуплоскость.

Ура! График готов!

Удачи вам в нелегком деле построения графиков!

Знак модуля, пожалуй, одно из самых интересных явлений в математике. В связи с этим у многих школьников возникает вопрос, как строить графики функций, содержащих модуль. Давайте подробно разберем этот вопрос.

1. Построение графиков функций, содержащих модуль

Пример 1.

Построить график функции y = x 2 – 8|x| + 12.

Решение.

Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 – 8x + 12 для x ≥ 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1).

Пример 2.

Следующий график вида y = |x 2 – 8x + 12|.

– Какова область значений предложенной функции? (y ≥ 0).

– Как расположен график? (Над осью абсцисс или касаясь ее).

Это значит, что график функции получают следующим образом: строят график функции y = x 2 – 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2).

Пример 3.

Для построения графика функции y = |x 2 – 8|x| + 12| проводят комбинацию преобразований:

y = x 2 – 8x + 12 → y = x 2 – 8|x| + 12 → y = |x 2 – 8|x| + 12|.

Ответ: рисунок 3.

Рассмотренные преобразования справедливы для всех видов функций. Составим таблицу:

2. Построение графиков функций, содержащих в формуле «вложенные модули»

Мы уже познакомились с примерами квадратичной функции, содержащей модуль, а так же с общими правилами построения графиков функций вида y = f(|x|), y = |f(x)| и y = |f(|x|)|. Эти преобразования помогут нам при рассмотрении следующего примера.

Пример 4.

Рассмотрим функцию вида y = |2 – |1 – |x|||. Выражение, задающее функцию, содержит «вложенные модули».

Решение.

Воспользуемся методом геометрических преобразований.

Запишем цепочку последовательных преобразований и сделаем соответствующий чертеж (рис. 4):

y = x → y = |x| → y = -|x| → y = -|x| + 1 → y = |-|x| + 1|→ y = -|-|x| + 1|→ y = -|-|x| + 1| + 2 → y = |2 –|1 – |x|||.

Рассмотрим случаи, когда преобразования симметрии и параллельного переноса не являются основным приемом при построении графиков.

Пример 5.

Построить график функции вида y = (x 2 – 4)/√(x + 2) 2 .

Решение.

Прежде чем строить график, преобразуем формулу, которой задана функция, и получим другое аналитическое задание функции (рис. 5).

y = (x 2 – 4)/√(x + 2) 2 = (x– 2)(x + 2)/|x + 2|.

Раскроем в знаменателе модуль:

При x > -2, y = x – 2, а при x < -2, y = -(x – 2).

Область определения D(y) = (-∞; -2)ᴗ(-2; +∞).

Область значений E(y) = (-4; +∞).

Точки, в которых график пересекает с оси координат: (0; -2) и (2; 0).

Функция убывает при всех x из интервала (-∞; -2), возрастает при x от -2 до +∞.

Здесь нам пришлось раскрывать знак модуля и строить график функции для каждого случая.

Пример 6.

Рассмотрим функцию y = |x + 1| – |x – 2|.

Решение.

Раскрывая знак модуля, необходимо рассмотреть всевозможную комбинацию знаков подмодульных выражений.

Возможны четыре случая:

{x + 1 – x + 2 = 3, при x ≥ -1 и x ≥ 2;

{-x – 1 + x – 2 = -3, при x < -1 и x < 2;

{x + 1 + x – 2 = 2x - 1, при x ≥ -1 и x < 2;

{-x – 1 – x + 2 = -2x + 1, при x < -1 и x ≥ 2 – пустое множество.

Тогда исходная функция будет иметь вид:

{3, при x ≥ 2;

y = {-3, при x < -1;

{2x – 1, при -1 ≤ x < 2.

Получили кусочно-заданную функцию, график которой изображен на рисунке 6.

3. Алгоритм построения графиков функций вида

y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b.

В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции?

Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков:

Графиком функции вида y = a 1 |x – x 1 | + a 2 |x – x 2 | + … + a n |x – x n | + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом и правом бесконечных звеньях.

Задача.

Построить график функции y = |x| + |x – 1| + |x + 1| и найти ее наименьшее значение.

Решение:

Нули подмодульных выражений: 0; -1; 1. Вершины ломаной (0; 2); (-1; 3); (1; 3). Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7). min f(x) = 2.

Остались вопросы? Не знаете, как построить график функции с модулем?
Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

, Конкурс «Презентация к уроку»

Презентация к уроку









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  • повторить построение графиков функций содержащих знак модуля;
  • познакомиться с новым методом построения графика линейно-кусочной функции;
  • закрепить новый метод при решении задач.

Оборудование:

  • мультимедиа проектор,
  • плакаты.

Ход урока

Актуализация знаний

На экране слайд 1 из презентации.

Что является графиком функции y=|x| ? (слайд 2).

(совокупность биссектрис 1 и 2 координатных углов)

Найдите соответствие между функциями и графиками, объясните ваш выбор (слайд 3).

Рисунок 1

Расскажите алгоритм построения графиков функций вида y=|f(x)| на примере функции y=|x 2 -2x-3| (слайд 4)

Ученик: чтобы построить график данной функции нужно

Построить параболу y=x 2 -2x-3

Рисунок 2

Рисунок 3

Расскажите алгоритм построения графиков функций вида y=f(|x|) на примере функции y=x 2 -2|x|-3 (слайд 6).

Построить параболу.

Часть графика при х 0 сохраняется и отображается симметрии относительно оси ОУ (слайд 7)

Рисунок 4

Расскажите алгоритм построения графиков функций вида y=|f(|x|)| на примере функции y=|x 2 -2|x|-3| (слайд 8).

Ученик: Чтобы построить график данной функции нужно:

Нужно построить параболу у=x 2 -2x-3

Строим у= x 2 -2|x|-3, часть графика сохраняем и симметрично отображаем относительно ОУ

Часть над ОХ сохраняем, а нижнюю часть симметрично отображаем относительно ОХ (слайд 9)

Рисунок 5

Следующее задание выполняем письменно в тетрадях.

1. Построить график линейно-кусочной функции у=|х+2|+|х-1|-|х-3|

Ученик на доске с комментарием:

Находим нули подмодульных выражений х 1 =-2, х 2 =1, х 3 =3

Разбиваем ось на промежутки

Для каждого промежутка запишем функцию

при х < -2, у=-х-4

при -2 х<1, у=х

при 1 х<3, у = 3х-2

при х 3, у = х+4

Строим график линейно-кусочной функции.

Мы с вами построили график функции используя определение модуля (слайд 10).

Рисунок 6

Предлагаю вашему вниманию “метод вершин”, который позволяет строить график линейно-кусочной функции (слайд 11). Алгоритм построения дети записывают в тетрадь.

Метод вершин

Алгоритм:

  1. Найдем нули каждого подмодульного выражения
  2. Составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа
  3. Нанесем точки на координатную плоскость и соединим последовательно

2. Разберем этот метод на той же функции у=|х+2|+|х-1|-|х-3|

Учитель на доске, дети в тетрадях.

Метод вершин:

Найдем нули каждого подмодульного выражения;

Составим таблицу, в которой кроме нулей запишем по одному значению аргумента слева и справа

Нанесем точки на координатную плоскость и соединим последовательно.

Графиком линейно-кусочной функции является ломанная с бесконечными крайними звеньями (слайд 12) .

Рисунок 7

Каким же методом график получается быстрее и легче?

3. Чтобы закрепить данный метод предлагаю выполнить следующее задание:

При каких значения х функция у=|х-2|-|х+1| принимает наибольшее значение.

Следуем алгоритму; ученик на доске.

у=|х-2|-|х+1|

х 1 =2, х 2 =-1

у(3)=1-4=3, соединяем последовательно точки.

4. Дополнительное задание

При каких значениях а уравнение ||4+x|-|x-2||=a имеет два корня.

5. Домашняя работа

а) При каких значениях Х функция у =|2x+3|+3|x-1|-|x+2| принимает наименьшее значение.

б) Построить график функции y=||x-1|-2|-3| .