Равнобедренный треугольник противолежащий. Как находить высоту в равнобедренном треугольнике? Формула нахождения, свойства высоты в равнобедренном треугольнике

В котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона - основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.

Терминология

Если треугольник имеет две равные стороны, то эти стороны называются боковыми сторонами, а третья сторона - основанием. Угол, образованный боковыми сторонами, называется вершинным углом , а углы, одной из сторон которых является основание, называются углами при основании .

Свойства

  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы , медианы и высоты , проведённые из этих углов.
  • Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.

Пусть a - длина двух равных сторон равнобедренного треугольника, b - длина третьей стороны, h - высота равнобедренного треугольника

  • a = \frac b {2 \cos \alpha} (следствие теоремы косинусов);
  • b = a \sqrt {2 (1 - \cos \beta)} (следствие теоремы косинусов);
  • b = 2a \sin \frac \beta 2 ;
  • b = 2a \cos \alpha (теорема о проекциях)

Радиус вписанной окружности может быть выражен шестью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:

  • r=\frac b2 \sqrt{\frac{2a-b}{2a+b}}
  • r=\frac{bh}{b+\sqrt{4h^2+b^2}}
  • r=\frac{h}{1+\frac{a}{\sqrt{a^2-h^2}}}
  • r=\frac b2 \operatorname{tg} \left (\frac{\alpha}{2} \right)
  • r=a\cdot \cos(\alpha)\cdot \operatorname{tg} \left (\frac{\alpha}{2} \right)

Углы могут быть выражены следующими способами:

  • \alpha = \frac {\pi - \beta} 2;
  • \beta = \pi - 2\alpha;
  • \alpha = \arcsin \frac a {2R}, \beta = \arcsin \frac b {2R} (теорема синусов).
  • Угол может также найден без {\pi} и R . Треугольник делится медианой пополам, и в полученных двух равных прямоугольных треугольниках вычисляется углы:
y = \cos\alpha =\frac {b}{c}, \arccos y = x

Периметр равнобедренного треугольника находится следующими способами:

  • P = 2a + b (по определению);
  • P = 2R (2 \sin \alpha + \sin \beta) (следствие теоремы синусов).

Площадь треугольника находится следующими способами:

S = \frac 1 2bh;

S = \frac 1 2 a^2 \sin \beta = \frac 1 2 ab \sin \alpha = \frac {b^2}{4 \tan \frac \beta 2}; S = \frac 1 2 b \sqrt {\left(a + \frac 1 2 b \right) \left(a - \frac 1 2 b \right)}; S = \frac 2 1 a \sqrt \beta = \frac 2 1 ab \cos \alpha = \frac {b^1}{2 \sin \frac \beta 1};

Смотри также

Напишите отзыв о статье "Равнобедренный треугольник"

Примечания

Отрывок, характеризующий Равнобедренный треугольник

На Марью Дмитриевну, хотя и боялись ее, смотрели в Петербурге как на шутиху и потому из слов, сказанных ею, заметили только грубое слово и шепотом повторяли его друг другу, предполагая, что в этом слове заключалась вся соль сказанного.
Князь Василий, последнее время особенно часто забывавший то, что он говорил, и повторявший по сотне раз одно и то же, говорил всякий раз, когда ему случалось видеть свою дочь.
– Helene, j"ai un mot a vous dire, – говорил он ей, отводя ее в сторону и дергая вниз за руку. – J"ai eu vent de certains projets relatifs a… Vous savez. Eh bien, ma chere enfant, vous savez que mon c?ur de pere se rejouit do vous savoir… Vous avez tant souffert… Mais, chere enfant… ne consultez que votre c?ur. C"est tout ce que je vous dis. [Элен, мне надо тебе кое что сказать. Я прослышал о некоторых видах касательно… ты знаешь. Ну так, милое дитя мое, ты знаешь, что сердце отца твоего радуется тому, что ты… Ты столько терпела… Но, милое дитя… Поступай, как велит тебе сердце. Вот весь мой совет.] – И, скрывая всегда одинаковое волнение, он прижимал свою щеку к щеке дочери и отходил.
Билибин, не утративший репутации умнейшего человека и бывший бескорыстным другом Элен, одним из тех друзей, которые бывают всегда у блестящих женщин, друзей мужчин, никогда не могущих перейти в роль влюбленных, Билибин однажды в petit comite [маленьком интимном кружке] высказал своему другу Элен взгляд свой на все это дело.
– Ecoutez, Bilibine (Элен таких друзей, как Билибин, всегда называла по фамилии), – и она дотронулась своей белой в кольцах рукой до рукава его фрака. – Dites moi comme vous diriez a une s?ur, que dois je faire? Lequel des deux? [Послушайте, Билибин: скажите мне, как бы сказали вы сестре, что мне делать? Которого из двух?]
Билибин собрал кожу над бровями и с улыбкой на губах задумался.
– Vous ne me prenez pas en расплох, vous savez, – сказал он. – Comme veritable ami j"ai pense et repense a votre affaire. Voyez vous. Si vous epousez le prince (это был молодой человек), – он загнул палец, – vous perdez pour toujours la chance d"epouser l"autre, et puis vous mecontentez la Cour. (Comme vous savez, il y a une espece de parente.) Mais si vous epousez le vieux comte, vous faites le bonheur de ses derniers jours, et puis comme veuve du grand… le prince ne fait plus de mesalliance en vous epousant, [Вы меня не захватите врасплох, вы знаете. Как истинный друг, я долго обдумывал ваше дело. Вот видите: если выйти за принца, то вы навсегда лишаетесь возможности быть женою другого, и вдобавок двор будет недоволен. (Вы знаете, ведь тут замешано родство.) А если выйти за старого графа, то вы составите счастие последних дней его, и потом… принцу уже не будет унизительно жениться на вдове вельможи.] – и Билибин распустил кожу.
– Voila un veritable ami! – сказала просиявшая Элен, еще раз дотрогиваясь рукой до рукава Билибипа. – Mais c"est que j"aime l"un et l"autre, je ne voudrais pas leur faire de chagrin. Je donnerais ma vie pour leur bonheur a tous deux, [Вот истинный друг! Но ведь я люблю того и другого и не хотела бы огорчать никого. Для счастия обоих я готова бы пожертвовать жизнию.] – сказала она.
Билибин пожал плечами, выражая, что такому горю даже и он пособить уже не может.
«Une maitresse femme! Voila ce qui s"appelle poser carrement la question. Elle voudrait epouser tous les trois a la fois», [«Молодец женщина! Вот что называется твердо поставить вопрос. Она хотела бы быть женою всех троих в одно и то же время».] – подумал Билибин.

Равнобедренный треугольник - это треугольник , в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона - основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.

Терминология

Если треугольник имеет две равные стороны, то эти стороны называются боковыми сторонами, а третья сторона - основанием. Угол, образованный боковыми сторонами, называется вершинным углом , а углы, одной из сторон которых является основание, называются углами при основании .

Свойства

  • Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы , медианы и высоты , проведённые из этих углов.
  • Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.

Пусть a - длина двух равных сторон равнобедренного треугольника, b - длина третьей стороны, h - высота равнобедренного треугольника

Радиус вписанной окружности может быть выражен пятью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:

Углы могут быть выражены следующими способами:

y = cos ⁡ α = b c , arccos ⁡ y = x {\displaystyle y=\cos \alpha ={\frac {b}{c}},\arccos y=x}

Периметр равнобедренного треугольника находится следующими способами:

Площадь треугольника находится следующими способами:

S = 1 2 b h ; {\displaystyle S={\frac {1}{2}}bh;}

S = 1 2 a 2 sin ⁡ β = 1 2 a b sin ⁡ α = b 2 4 tan ⁡ β 2 ; {\displaystyle S={\frac {1}{2}}a^{2}\sin \beta ={\frac {1}{2}}ab\sin \alpha ={\frac {b^{2}}{4\tan {\frac {\beta }{2}}}};} S = 1 2 b (a + 1 2 b) (a − 1 2 b) ; {\displaystyle S={\frac {1}{2}}b{\sqrt {\left(a+{\frac {1}{2}}b\right)\left(a-{\frac {1}{2}}b\right)}};} S = 2 1 a β = 2 1 a b cos ⁡ α = b 1 2 sin ⁡ β 1 ; {\displaystyle S={\frac {2}{1}}a{\sqrt {\beta }}={\frac {2}{1}}ab\cos \alpha ={\frac {b^{1}}{2\sin {\frac {\beta }{1}}}};}

Треугольник, у которого две стороны равны между собой, называется равнобедренным. Эти его стороны называют боковыми, а третью сторону называют основанием. В этой статье мы расскажем Вам о том, какие бывают свойства равнобедренного треугольника.

Теорема 1

Углы возле основания равнобедренного треугольника равны между собой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB. Давайте рассмотрим треугольник BAC. Эти треугольники, по первому признаку, равны между собой. Так и есть, ведь BC = AC, AC = BC, угол ACB = углу ACB. Отсюда вытекает, что угол BAC = углу ABC, ведь это соответствующие углы наших равных между собой треугольников. Вот Вам и свойство углов равнобедренного треугольника.

Теорема 2

Медиана в равнобедренном треугольнике, которую провели к его основанию, является также высотой и биссектрисой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB, а CD - это медиана, которую мы провели к его основанию. В треугольниках ACD и BCD угол CAD = углу CBD, как соответствующие углы при основании равнобедренного треугольника (Теореме 1). А сторона AC = стороне BC (по определению равнобедренного треугольника). Сторона AD = стороне BD, Ведь точка D делит отрезок AB на равные части. Отсюда выходит, что треугольник ACD = треугольнику BCD.

Из равенства этих треугольников мы имеем равенство соответствующих углов. То есть угол ACD = углу BCD и угол ADC = углу BDC. Из равенства 1 выходит, что CD - это биссектриса. А угол ADC и угол BDC - смежные углы, и из равенства 2 выходит, что они оба прямые. Получается, что CD - это высота треугольника. Это и есть свойство медианы равнобедренного треугольника.

А теперь немного о признаках равнобедренного треугольника.

Теорема 3

Если в треугольнике два угла равны между собой, то такой треугольник равнобедренный

Доказательство теоремы.

Допустим, мы имеем треугольник ABC, в котором угол CAB = углу CBA. Треугольник ABC = треугольнику BAC по второму признаку равенства между треугольниками. Так и есть, ведь AB = BA; угол CBA = углу CAB, угол CAB = углу CBA. Из такого равенства треугольников мы имеем равенство соответствующих сторон треугольника - AC = BC. Тогда выходит, что треугольник ABC равнобедренный.

Теорема 4

Если в любом треугольнике его медиана является также и его высотой, то такой треугольник равнобедренный

Доказательство теоремы.

В треугольнике ABC мы проведем медиану CD. Она также будет являться и высотой. Прямоугольный треугольник ACD = прямоугольному треугольнику BCD, так как катет CD общий для них, а катет AD = катету BD. С этого следует, что их гипотенузы равны между собой, как соответственные части равных треугольников. Это значит, что AB = BC.

Теорема 5

Если три стороны треугольника равны трем сторонам другого треугольника, то эти треугольники равны

Доказательство теоремы.

Допустим, мы имеем треугольник ABC и треугольник A1B1C1 такие, в которых стороны AB = A1B1, AC = A1C1, BC = B1C1. Рассмотрим доказательство этой теоремы от противного.

Допустим, что эти треугольники не равны между собой. Отсюда имеем, что угол BAC не равен углу B1A1C1, угол ABC не равен углу A1B1C1, угол ACB не равен углу A1C1B1 одновременно. В противном случае, эти треугольники были бы равны по вышерассмотренному признаку.

Допустим, что треугольник A1B1C2 = треугольнику ABC. У треугольника вершина C2 лежит с вершиной C1 относительно прямой A1B1 в одной полуплоскости. Мы предположили, что вершины C2 и C1 не совпадают. Допустим, что точка D - это середина отрезка C1C2. Так мы имеем равнобедренные треугольники B1C1C2 и A1C1C2, у которых есть общее основание C1C2. Выходит, что их медианы B1D и A1D - это также и их высоты. А это значит, что прямая B1D и прямая A1D перпендикулярны прямой C1C2.

B1D и A1D имеют разные точки B1 и A1, и соответственно, не могут совпадать. Но ведь через точку D прямой C1C2 мы можем провести всего одну перпендикулярную ей прямую. У нас получилось противоречие.

Теперь Вы знаете, какие бывают свойства равнобедренного треугольника!

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми , а третья сторона - основанием .

АВ = ВС - боковые стороны

АС - основание


Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем :

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС .

Боковые стороны равны АВ = ВС ,

Следовательно углы при основании ∠ BАC = ∠ BСA .

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC .
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны ().
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1).
  • АВ = ВС - боковые стороны равны.
  • Стороны АD = СD, т.к. точка D отрезок делит пополам.
  • Следовательно Δ ABD = ΔBCD.
  • Биссектриса, высота и медиана это один отрезок - BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

  • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Дано два Δ ABC и Δ A 1 B 1 C 1 . Стороны AB = A 1 B 1 ; BC = B 1 C 1 ; AC = A 1 C 1 .

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A 1 B 1 C 2 = Δ ABC, у которого вершина C 2 лежит в одной полуплоскости с вершиной C 1 относительно прямой A 1 B 1 . По предположению вершины C 1 и C 2 не совпадают. Пусть D – середина отрезка C 1 C 2 . Δ A 1 C 1 C 2 и Δ B 1 C 1 C 2 – равнобедренные с общим основанием C 1 C 2 . Поэтому их медианы A 1 D и B 1 D являются высотами. Значит, прямые A 1 D и B 1 D перпендикулярны прямой C 1 C 2 . A 1 D и B 1 D имеют разные точки A 1 и B 1 , следовательно, не совпадают. Но через точку D прямой C 1 C 2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы равнобедренного треугольника

  • b - сторона (основание)
  • а - равные стороны
  • a - углы при основании
  • b

Формулы длины стороны (основания - b ):

  • b = 2a \sin(\beta /2)= a \sqrt { 2-2 \cos \beta }
  • b = 2a \cos \alpha

Формулы длины равных сторон - (а):

  • a=\frac { b } { 2 \sin(\beta /2) } = \frac { b } { \sqrt { 2-2 \cos \beta } }
  • a=\frac { b } { 2 \cos\alpha }

  • L - высота=биссектриса=медиана
  • b - сторона (основание)
  • а - равные стороны
  • a - углы при основании
  • b - угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L ):

  • L = a sina
  • L = \frac { b } { 2 } *\tg\alpha
  • L = a \sqrt { (1 + \cos \beta)/2 } =a \cos (\beta)/2)

Формула высоты, биссектрисы и медианы, через стороны, (L ):

  • L = \sqrt { a^ { 2 } -b^ { 2 } /4 }

  • b - сторона (основание)
  • а - равные стороны
  • h - высота

Формула площади треугольника через высоту h и основание b, (S ):

S=\frac { 1 } { 2 } *bh